
METHOD OF DESIGNING A VORTICAL DIFFUSER 

V. T. Bolov UDC 533.697:532.527 

A method is proposed for theoretically determining the characteristics of a vor- 
tical diffuser. Comparison of the theoretical and experimental results shows 
that they agree well. 

Most vortical refrigerating and vacuum devices have divergent diffusers which actively 
affect their characteristics. The self-evacuating vortex tube (SVT) and turbine vacuum pump 
(TVP) could not operate without a diffuser (Figs. 1 and 2). 

The hypothesis of vortex interaction [i] makes it possible to calculate the character- 
istics of vortex flow tubes. Here their energy characteristics are dependent on the param- 
eter ~i = P1/Pax" 

In vortex flow tubes, the cold gaseous component is discharged into the atmosphere, so 
that the total expansion of the gas in the vortex ~* can be found. This is because the pres- 
sure on the axis Pax is equal to the atmospheric pressure Pn o 

In the case of the operation of SVT's and TVP's, this parameter is not determined, since 
the pressure on the axis Pax is unknown. As experimental studies [2, 3] have shown, the value 
of ~* can be regulated within the range n* = 1-40 by changing the geometric characteristics 
of the diffuser (by changing the width of the diffuser slit, shaping the latter, etc.). Thus, 
the total gas expansion in a vortex for vortical devices of a given type has been determined 
only experimentally up to the present time. 

The proposed method of designing vortex units is based on an iteration method, developed 
by the author [4], for determining the inlet parameters of the diffuser of a vortex unit and 
relations describing the distribution of thermodynamic parameters in the vortex chamber [i]. 

Determination of the parameters at the diffuser inlet involves the use of a technique 
for designing a two-dimensional divergent diffuser with allowance for compressibility, vis- 
cosity, and separation losses [5]. For a divergent diffuser with a through section of a 
linearly varying width, we will write the design equations asfollows: 
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The distribution of dimensionless radial velocity over the diffuser radius is found by 
solving differential equation (I), while the distribution of the peripheral velocity compo- 
nent is found from Eq. (2). 
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i. Diagram of gas flow in a self-evacuating vortex tube. 
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Fig. 2. 

Fig. 3. 
on the available gas expansion; 
obtained by experiment [4]. 

Basic diagram of turbine vacuum pump. 

Dependence of static pressure at the inlet of an SVT diffuser 
curve obtained by calculation; points 

The separation losses in the diffuser are accounted for with the correction factor X: 

= ao (~) [ ~  - -  a~ (13)F + a~ (~), (3 )  

where 

a0 = 5,29 -- 0,33613 @ 0.885132. 10 -2 - -  O, 115.10-3133; a I : 0,28278 g- 0.026513 -- 0,636.10-3132 4- 0,26167.10-~133; 

1,2, j3 < 10,66; 

a2 = 1,55 - -  0,04061J -F 0,00108132- 0 , 1 0 1 . 1 0 - ~  3. 

The  p r e s s u r e - g r a d i e n t  d i s t r i b u t i o n  i s  f o u n d  f r o m  t h e  e q u a t i o n  o f  momentum ( 1 ) :  
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The pressure coefficient is calculated from the formula 

2 i >d7 
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The flat divergent diffusers normally used in SVT's and TVP's (y = 0) are quite large: 
D-- d = Dd/dvc = 4-6 tube diameters. The static pressure at the diffuser outlet is usually 
known, and most often it is equal to the atmospheric pressure Pn" Taking this into considera- 
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:tion and using the continuity equation, we can determine the radial component of velocity 
at the diffuser outlet 
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( 6 )  

In Eq. (6), the outlet component of velocity in the peripheral direction is determined 
in a first approximation without allowance for friction losses. Using the equation of con- 
servation of angular momentum, we obtain an expression for calculating peripheral velocity 

%q)d = %q;1/frd (1 -]1- 2]]~d/dNc)]- (7)  

The rate of flow of compressed air through tangential nozzles is calculated from the 
formula in [6] : 

h+l 

~o = 0 . 9 8 ,  G1 = / ~ - (  , 

The stagnation temperature in the diffuser is taken equal to the temperature at the 
inlet of the vortex device. 

The assumption that the walls of the SVT, TVP, and diffuser are adiabatic is valid due 
to the fact that the gas temperature at the outlet of the tangential nozzles and the tem- 
perature of the ejected gas is close to room temperature. 

The iteration method in [4] can be used to determine the radial velocity at the diffuser 
inlet. Assigning a value for the radial inlet velocity, we can use Eqs. (1)-(5) to determine 
the radial velocity at the diffuser outlet. The value of outlet radial velocity obtained 
by solving differential equation (i) is compared with the corresponding value calculated from 
Eq. (6). The cycle is repeated until the following assigned accuracy is achieved. 

l%rd i -- %rdl/)~rd ~ Sl- (i0) 

The initial radial velocity corresponding to condition (i0) is also the sought value 
fro = Iroi. The static and total pressure at the diffuser inlet is determined from the 
numerical value of the pressure coefficient: 

Pd~=Pn~C(~o) I T ( ~ o ) - ~ k  1-1 d T--<- f ~ ~o , (ii) 

F I 1 k %o <~-i (%0) (12) Pd*0 = P ~  (z0) + ~ k +---F 

It is apparent from Fig. 3, showing the distribution of static pressure at the inlet 
of an SVT diffuser, that the agreement between the pressure calculated from Eq. (12) and the 
experimental value is good. 

In the vortex theory, the entire region of peripheral velocities in a vortex chamber 
is subdivided into a region of forced vortical flow and a zone of potential flow (Fig. i). 
In accordance with the hypothesis of vortex interaction [i], turbulent energy transfer occurs 
in a vortex chamber when the distribution of thermodynamic parameters corresponds to an 
adiabatic curve. 

Following [i], the static pressure in a forced vortical flow and in the potential region 
is determined thus: h 

p = p t  [1 k - - ]  M~(1F2 1)]k-~ 
7 - -  , ( 1 3 )  
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Fig. 4. Dependence of total gas expansion on available gas expansion 
(a) and radial distribution of total temperature in an SV~ (b): ~) 
points are from the data in [4]; F c = 0.075; Ao = 0.025; D d = 4; R d = 
0.166; the curve is calculated; b) points are from the data in [3]; 
the curve shows the calculated results. 

k--1 k 

(14) 

As is known [7], the axial velocity in a vortex chamber changes sign. The radius for 
which this quantity will be equal to zero is less than the radius of separation of the vor- 
tices Y2. Figure 1 shows the distribution of axial velocity in a vortex chamber. The pro- 
posed design method is based on equality of the static and total pressures at the radius of 
zero axial velocity Y3 (Fig. i) and the diffuser inlet (ii), (12). 

We write the radius ~3 in the following form: 

r-3 ----- f r2 .  " (15) 

The function f is determined from (14): 
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The radius of separation r2, in accordance with [i], is equal to 

7~ _- (k- I) M~ 
h--I 

1 - -  ( l /m) ~ + o , 5 ( ~ - -  t)M~ 
(17) 

The assumption made regarding equality of the static pressures at r3 and the diffuser 
inlet can be explained thus: Static pressure is higher at a vortex-chamber radius greater 
than r3 than at the diffuser inlet -- axial velocity is directed toward the diffuser at a 
vortex-chamber radius smaller than ~3, static pressure is less than the corresponding value 
at the diffuser inlet -- axial velocity is directed away from the diffuser. The equality of 
the axial velocity at the radius ~3 to zero corresponds to equality of the static pressures 
at ~a and the diffuser inlet. 

The equality of the total pressures at ~3 and the diffuser inlet can be interpreted, 
hy means of the theory of elemental jets, as gas flows from the radius with zero axial vel- 
ocity r3 to ro (inlet radius of diffuser) without losses (to the right in Fig. i). 

The algorithm of the proposed method is as follows: 

i) The geometric (Fc, Ao, ~, D d, dvc) and regime parameters (7, P~, T~) of the vortex 
unit are assigned; 

2) the static and total pressure at the diffuser inlet are determined from Eqs, (1)-(12); 
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3) assigning numerical values for the gas expansion, f and the peripheral velocity at 
the given radius are calculated from Eqs. (15)-(17); 

4) the calculated total pressure at r3 is compared with the total pressure at the dif- 
fuser inlet P~o (12). 

The numerical value of expansion ~x corresponding to equality of the total pressures 
at the diffuser inlet and the radius r3 is also the solution of the problem. 

Figure 4a shows a comparison of experimental data from [3] and calculated values of 
total expansion v* in an SVT in relation to the available gas expansion vo It is apparent 
from the figure that the theoretical and empirical data agree satisfactorily. 

The gas-temperature distribution over the vortex-chamber radius, according to [i], is 
calculated thus: 

k - - I  

T = T~ [(I/~) k ~_ 0,5(k-- I)M 2 72 ]" T*  = T v - I  (s 

It is apparent from Fig. 4b that the spread of empirical and theoretical distributions 
over the radius of an SVT vortex chamber reaches i0%, 

NOTATION 

dvc, diameter of vortex chamber, m; T~, T~, stagnation temperature at the diffuser inlet 
and vortex-tube inlet, ~ Fc, area of tangential nozzle inlet, ma; R, universal gas con- 
stant, J/kg.deg; k, adiabatic curve constant; s, gas-dynamic density function; ~ = ro/Ao, 
relative width of diffuser channel at the inlet; ~ = r/ro, relative radius; ~, kinematic 
viscosity of gas, m2/sec; y, slope of Walls of divergent diffuser, deg; Rd, radius of con- 

- ~ ,I 2k . ~ o , ~  
tact of diffuser and vortex tube, m; ~ = A/5o, relative diffuser gap; ~v~/~-~RTd ~ 

relative radial velocity; ~ = v/(, 2k ,\0,5 [ 2k .~c,5 ~RTd ) -- relative peripheral velocity; ~z = vz/\~-~RTd) , 

! 2k 
relative axial velocity; MI = vl/ (~-~RTd) ~ velocity at vortex-tube inlet; P~, pressure at 

vortex-tube inlet, Pa; PI, static pressure on the wall of the vortex chamber= P , P ~ static 
�9 ~ ax n 

pressure on the axis of the vortex device and barometrlc pressure, Pa; ~ = PI/Pn, available 

gas expansion; ~* = P~/Pax' total gas expansion; ~: = P1/Pax, gas expansion; ~= d P r0 d-- 

dimensionless pressure gradient. Indices: 0, parameters at the diffuser inlet; I, at the 
vortex-tube inlet; * and d, stagnation parameters and parameters at the diffuser outlet, 
respectively. 
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SOLUTION OF A TWO-DIMENSIONAL CONJUGATE PROBLEM OF STABILIZED 

HEAT TRANSFER IN THE LAMINAR FLOW OF A LIQUID IN A CHANNEL 

Yu. N. Akkuratov and V. N. Mikhailov UDC 536.24.02 

A two-dimensional problem of conjugate heat exchange is solved by the method of 
integral boundary-value equations. Heat exchange in a body with cylindrical 
channels is studied. 

Theoretical investigations of convective heat exchange between a solid and a liquid 
are generally conducted by assigning third-order boundary conditions on the solid--liquid 
interface. These conditions include the heat-transfer coefficient a, determined a priori. 
Such a formulation of the problem does not consider the mutual thermal effect of the body 
and liquid, and heat exchange is independent of the properties of the body or its thermo- 
physical characteristics, dimensions, etc. Thus, it is necessary to examine a so-called 
conjugate problem, i.e., to simultaneously solve the equations of heat conduction in the 
body and liquid under the condition of equality of the temperatures and heat fluxes at the 
interface [i, 2]. 

One of the approaches to solving conjugate problems is based on the method of integral 
boundary-value equations [3]. 

Let the flat wall of the heat exchanger receive a heat flow of intensity q. The heat 
is removed by a liquid flowing in cylindrical channels of the same radius lying in a plane 
parallel to the wall. We will assume that the motion of the liquid is laminar and that the 
heat exchange between the liquid and solid is steady. 

Using these assumptions and symmetry conditions, let us formulate the problem of de- 
termining the temperature field in the following manner: 

In a two-dimensional region D (Fig. i), consisting of two subregions DI (solid) and D2 
(liquid), it is necessary to find the solution to the system of equations 

02Tt + 02T1 -0  (x, y)ED1, ( i )  
Ox 2 Oy z 

cpgW OT2 -- )~2 ( OZT~ OZT2 \ + ) (x, (2) 

with the following boundary conditions: 

On --q (x, y)CCD, T1 = T2, ~l OTIOn OTootz 

We have assigned 3T/3n = 0 on the rest of the boundary. Since only the heat flux is as- 
signed on the boundary, the temperature is determined to within a constant, chosen so that 
the temperature integral over the interface AB is equal to zero. 

On the section of thermal stabilization, the derivative 3T=/~z will be constant. From 

OT2 2qa 
the condition of heat balance, we find cp9 Oz ~RzW 

The velocity field for laminar flow in a channel of circular cross section is given by 
Poiseuille's formula [I]: 
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